淀粉损失检测试剂盒

淀粉损失检测试剂盒,Starch Damage Assay Kit

英文名:Starch Damage Assay Kit

中文品名:淀粉损伤检测试剂盒

货号:K-SDAM

规格:200 assays per kit,200 次检测

应用:淀粉损伤检测试剂盒,用于谷物面粉中淀粉损伤的检测和分析。

原理:
谷物淀粉中淀粉损伤紫外检测方法
淀粉损伤检测试剂盒 (K-SDAM)检测原理
检测方法:分光光度法 @510 nm
反应时间:~ 40分钟
检测限:样品重量的0.5-100%
应用案例:
谷物面粉和其它食材。
方法识别:
符合AACC (方法 76-31.01), ICC (标准号 164) 和 RACI (标准方法)。
试剂盒组成:
Bottle 1: 真菌α-淀粉酶(pH5.4和40°C条件下,10 mL, 1,000 U/mL on Ceralpha reagent* )。硫酸铵悬浮液。
4°C下稳定超过 3年
Bottle 2: 淀粉葡萄糖苷酶(pH 4.5 和40°C条件下,4 mL, 200 U/mL 在可溶性淀粉中)。硫酸铵悬浮液。
4°C稳定超过3年
Bottle 3: GOPOD 试剂缓冲液。缓冲液(50 mL, pH7.4), 对羟基苯甲酸和叠氮钠(0.095% w/v).
4°C稳定超过4年
Bottle 4: GOPOD 试剂酶。葡萄糖氧化酶,过氧化酶和4-氨基安替比林。冻干粉。
-20°C稳定超过5年
Bottle 5: D-葡萄糖标准溶液(5 mL, 1.5 mg/mL) 溶于0.2% (w/v)苯甲酸。
室温下稳定超过5年
Bottle 6: 小麦面粉标样。淀粉损伤程度在小瓶标签上注明。
室温下稳定超过5年

Megazyme 淀粉损伤检测试剂盒(K-SDAM)

淀粉损伤检测试剂盒, Starch Damage Assay Kit , 货号:K-SDAM
品牌:Megazyme
货号:K-SDAM
中文品名:淀粉损伤检测试剂盒
品名:Starch Damage Assay Kit
规格:200 次检测
应用:淀粉损伤检测试剂盒,用于谷物面粉中淀粉损伤的检测和分析。
原理:
谷物淀粉中淀粉损伤紫外检测方法
淀粉损伤检测试剂盒 (K-SDAM)检测原理
检测方法:分光光度法 @510 nm
反应时间:~ 40分钟
检测限:样品重量的0.5-100%
应用案例:
谷物面粉和其它食材。
方法识别:
符合AACC (方法 76-31.01), ICC (标准号 164) 和 RACI (标准方法)。
试剂盒组成:
Bottle 1: 真菌α-淀粉酶(pH5.4和40°C条件下,10 mL, 1,000 U/mL on Ceralpha reagent* )。硫酸铵悬浮液。
4°C下稳定超过 3年
Bottle 2: 淀粉葡萄糖苷酶(pH 4.5 和40°C条件下,4 mL, 200 U/mL 在可溶性淀粉中)。硫酸铵悬浮液。
4°C稳定超过3年
Bottle 3: GOPOD 试剂缓冲液。缓冲液(50 mL, pH7.4), 对羟基苯甲酸和叠氮钠(0.095% w/v).
4°C稳定超过4年
Bottle 4: GOPOD 试剂酶。葡萄糖氧化酶,过氧化酶和4-氨基安替比林。冻干粉。
-20°C稳定超过5年
Bottle 5: D-葡萄糖标准溶液(5 mL, 1.5 mg/mL) 溶于0.2% (w/v)苯甲酸。
室温下稳定超过5年
Bottle 6: 小麦面粉标样。淀粉损伤程度在小瓶标签上注明。
室温下稳定超过5年

优点:

价格非常具有竞争力
所有试剂制备后可以稳定保存超过2年
仅提供酶法检测试剂盒
特异性
操作简单
官网提供Mega-Calc™ 软件工具用于一站式原始数据处理
包含标准品

The Starch Damage test kit is suitable for the measurement and analysis of starch damage in cereal flours.

Colourimetric method for the determination of Starch Damage
in cereal flours

Principle:
(fungal α-amylase)
(1) Damaged (or gelatinised) starch + H2O → maltodextrins

(amyloglucosidase)
(2) Maltodextrins + H2O → D-glucose

(glucose oxidase)
(3) D-Glucose + H2O + O2 → D-gluconate + H2O2

(peroxidase)
(4) 2H2O2 + p-hydroxybenzoic acid + 4-aminoantipyrine →
quinoneimine + 4H2O

Kit size: 200 assays
Method: Spectrophotometric at 510 nm
Total assay time: ~ 40 min
Detection limit: 0.5-100% of sample weight
Application examples:
Cereal flours and other materials
Method recognition:
AACC (Method 76-31.01), ICC (Standard No. 164), and RACI (Standard
Method)

Advantages

  • Very cost effective
  • All reagents stable for > 2 years after preparation
  • Only enzymatic kit available
  • Very specific
  • Simple format
  • Mega-Calc™ software tool is available from our website for hassle-free raw data processing
  • Standard included
参考文献:
An improved enzymic method for the measurement of starch damage in wheat flour. Gibson, T. S., Al Qalla, H. & McCleary, B. V. (1992). Journal of Cereal Science, 15(1), 15-27.
Collaborative evaluation of an enzymatic starch damage assay kit and comparison with other methods. Gibson, T. S., Kaldor, C. J. & McCleary, B. V. (1993). Cereal Chem., 70(1), 47-51.
Measurement of total starch in cereal products by amyloglucosidase-alpha-amylase method: collaborative study. McCleary, B. V., Gibson, T. S. & Mugford, D. C. (1997). Journal of AOAC International, 80, 571-579.
Measurement of carbohydrates in grain, feed and food. McCleary, B. V., Charnock, S. J., Rossiter, P. C., O’Shea, M. F., Power, A. M. & Lloyd, R. M. (2006). Journal of the Science of Food and Agriculture, 86(11), 1648-1661.
Starch properties, in vitro digestibility and sensory evaluation of fresh egg pasta produced from oat, teff and wheat flour. Hager, A. S., Czerny, M., Bez, J., Zannini, E. & Arendt, E. K. (2013). Journal of Cereal Science, 58(1), 156-163.
Effect of sorghum flour composition and particle size on quality properties of gluten-free bread. Trappey, E. F., Khouryieh, H., Aramouni, F. & Herald, T. (2014). Food Science and Technology International, 1082013214523632.
Nutritional properties and ultra-structure of commercial gluten free flours from different botanical sources compared to wheat flours. Hager, A. S., Wolter, A., Jacob, F., Zannini, E. & Arendt, E. K. (2012). Journal of Cereal Science, 56(2), 239-247.
Quality variations in flours used for pretzel manufacturing. Yao, N. & Seetharaman, K. (2010). International Journal of Food Science & Technology, 45(10), 2052-2061.
Effect of corn preparation methods on dry-grind ethanol production by granular starch hydrolysis and partitioning of spent beer solids. Lamsal, B. P., Wang, H. & Johnson, L. A. (2011). Bioresource Technology, 102(12), 6680-6686.
Flaking as a corn preparation technique for dry-grind ethanol production using raw starch hydrolysis. Lamsal, B. P. & Johnson, L. A. (2012). Journal of Cereal Science, 56(2), 253-259.
Chemical composition and functional properties of native chestnut starch (Castanea sativa Mill). Cruz, B. R., Abraão, A. S., Lemos, A. M. & Nunes, F. M. (2013). Carbohydrate Polymers, 94(1), 594-602.
Changes in rice with variable temperature parboiling: thermal and spectroscopic assessment. Himmelsbach, D. S., Manful, J. T. & Coker, R. D. (2008). Cereal chemistry, 85(3), 384-390.
Determination of formulation and processing factors affecting slowly digestible starch, protein digestibility and antioxidant capacity of extruded sorghum–maize composite flour. Licata, R., Chu, J., Wang, S., Coorey, R., James, A., Zhao, Y. & Johnson, S. (2014). International Journal of Food Science & Technology, 49(5), 1408-1419.
Analysis of starch amylolysis using plots for first-order kinetics. Butterworth, P. J., Warren, F. J., Grassby, T., Patel, H. & Ellis, P. R. (2012). Carbohydrate Polymers, 87(3), 2189-2197.